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Unidirectional fibrous laminates Single ply composite - basic assumptions

Plies made of aligned fibers bonded to homogeneous matrix
Derivation of local fields

Microstructural details are known −→ FEM analysis assuming RVE
in terms of PUC

Volume fractions, shape and orientation of inclusions are given only
−→ Mori-Tanaka method
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Unidirectional fibrous laminates First-order shear deformable laminated plate theory

Classical laminated plate theory

Representative volume element Kinematic assumptions

Displacement field

u1(x1, x2, x3) = U1(x1, x2) + x3φ2(x1, x2)

u2(x1, x2, x3) = U2(x1, x2)− x3φ1(x1, x2)

u3(x1, x2, x3) = U3(x1, x2)
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Unidirectional fibrous laminates First-order shear deformable laminated plate theory

In-plane strains Em = [E11, E22, E12]T

Em = E0
m + x3Sκ

E0
m =

[
U1,1, U2,2, U1,2 + U2,1

]T
κ =

[
φ1,2, φ2,1, φ1,1 − φ2,2

]T
Out-of-plane strains Es = [E23, E13]T

Es =
[
U3,2 − φ1, U3,1 + φ2

]T
Ply constitutive relations in local coordinates

σi
m = Li

m

(
εi

m − µi
m

)
σi

s = Li
s

(
εi

s − µi
s

)
µi

m = mi∆θi +
(
εin

m

)
i

µi
s =

(
εin

s

)
i

Ply constitutive relations in global coordinates

S i
m = Li

m

(
E i

m − µi
m

)
S i

s = Li
s

(
E i

s − µi
s

)
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Unidirectional fibrous laminates First-order shear deformable laminated plate theory

Global fields in terms of their local counterparts

S i
m = NT

i σ
i
m, S i

s = ÑT
i σ

i
s

E i
m = RT

i ε
i
m, E i

s = R̃T
i ε

i
s

µi
m = RT

i µ
i
m, µi

s = R̃T
i µ

i
s

Li
m = NT

i Li
mNi Li

s = ÑT
i Li

sÑi

Transformation matrices

RT
i = (Ni)

−1 =

 cos2 ψi sin2 ψi −1
2 sin 2ψi

sin2 ψi cos2 ψi
1
2 sin 2ψi

sin 2ψi − sin 2ψi cos 2ψi


R̃T

i = ÑT
i =

[
cosψi sinψi
− sinψi cosψi

]
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Unidirectional fibrous laminates First-order shear deformable laminated plate theory

Force and moment resultants

F =

∫ h
2

− h
2

Smdx3 =
N∑

i=1

∫ xi
3
2

−
xi
3
2

S i
mdx3

SM =

∫ h
2

− h
2

x3Smdx3 =
N∑

i=1

∫ xi
3
2

−
xi
3
2

x3S i
mdx3

Q =

∫ h
2

− h
2

Ssdx3 =
N∑

i=1

∫ xi
3
2

−
xi
3
2

S i
sdx3

P =

[
I(3x3) x3I(3x3) 0

0 0 I(2x2)

]
Qi =

[
I(3x3) (x3 − x̄ i

3)I(3x3) 0
0 0 I(2x2)

]
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Unidirectional fibrous laminates First-order shear deformable laminated plate theory

Force and moment resultants in compact form F = [F,SM,Q]T

F =
N∑

i=1

Li

∫ xi
3
2

−
xi
3
2

PTPdx3E +
N∑

i=1

∫ xi
3
2

−
xi
3
2

PTQidx3Λi

= LE +
N∑

i=1

Q̂iΛi = LE + Λ (λ = −Lµ)

L =

 A B 0
B D 0
0 0 E

 , E =
[
E0

m, Sκ, Es

]T
, Λi =

[
λ

i
m, λ

i
m,3, λ

i
s

]T

A =
N∑

i=1

(
x i−1

3 − x i
3

)
Li

m =
N∑

i=1

hiL
i
m, B =

N∑
i=1

(
x i−1

3

)2
−
(
x i

3
)2

2
Li

m

D =
N∑

i=1

(
x i−1

3

)3
−
(
x i

3
)3

3
Li

m, E =
N∑

i=1

(
x i−1

3 − x i
3

)
Li

s =
N∑

i=1

hiL
i
s
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Unidirectional fibrous laminates First-order shear deformable laminated plate theory

Ply stresses S i =
[
S i

m, S i
s

]T
in terms of laminate fields

S i = HiF +
N∑

j=1

KijΛj

Ply stress and eigenstress distribution factors

Hi = LiPM
Kij = δijP− HiQ̂j

S i = LiPMF − LiPM
N∑

j=1

Q̂jΛj + QiΛi

Stresses in individual phases (fibers, matrix): Micromechanical
models (MT method) combined with transformation field analysis
(TFA)
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Unidirectional fibrous laminates Single ply composite

Local stresses in individual phases

Attention limited to two-phase fiber-matrix composites
Individual phases are denoted by subscripts ρ = f ,m to identify
fiber (f ) and matrix (m) phases
The load is assumed in terms of macroscopically uniform stresses
σ0 ← Si , uniform temperature change ∆θ and piece-wise uniform
eigenstrains µρ

Phase stresses in the spirit of TFA

σρ(x) = Bρ(x)σ0 + bρ(x)∆θ −
2∑

η=1

Fρη(x)Lηµη

Bρ - stress concentration factor derived, e.g. from the Mori-Tanaka
method [Benveniste (1987)]
bρ - thermal stress concentration factor [Laws (1973)]
Fρη - transformation influence function [Dvorak (1992)]
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Unidirectional fibrous laminates Single ply composite

Two-phase composite

thermal stress concentration factors

bρ(x) = [I− Bρ(x)] (Mm −Mf )−1 (mf −mm)

Transformation influence functions

Fρm(x) = [I− Bρ(x)] (Mm −Mf )−1 Mm

Fρf (x) = − [I− Bρ(x)] (Mm −Mf )−1 Mf

mρ - stores coefficients of thermal expansion of a given phase ρ
Mρ - phase compliance matrix
NOTE: For a general number of phases the transformation
influence functions must be computed numerically using a suitable
RVE
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Unidirectional fibrous laminates Ply field averages in laminates

Basic assumptions:
Attention limited to symmetric laminates, e.g. (0/±45/90)s
Load applied through macroscopically uniform in-plane overall
stresses S = [S11, S22, S12]T , (S ← Sm), uniform temperature
change ∆θ uniform in-plane ply eigenstrains µi = [µ11, µ22, µ12]T

i

Overall response of composite laminate

S = LE + l∆θ + λ, E = MS + m∆θ + µ, m = −Ll, λ = −Lµ

L = hA =
N∑

i=1

ciLi , l =
N∑

i=1

ci li , λ =
N∑

i=1

ciλi , ci = hi/h

Ply stresses from compatibility Ei = E and equilibrium∑N
i=1 ciSi = S conditions, and Levin’s formula

Si = HiS + hi∆θ −
N∑

j=1

KijLjµj

Hi = LiM, Kij = δij I− cjHi , hi = li − Hi l µj = RT
j

2∑
η=1

c j
ηB

j
η

T
µj
η
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Unidirectional fibrous laminates Local stress fields in plies

Stresses in individual phases
Recall phase stresses in the i th ply

σi
ρ = Bi

ρRiS i + bi
ρ∆θ −

M∑
η=1

Fi
ρηL

i
ηµ

i
η

Introducing the previous relations into the above equation gives

σi
ρ = Bi

ρRi (HiS + hi∆θ) + bi
ρ∆θ −

M∑
η=1

Fi
ρηL

i
ηµ

i
η − Bi

ρRi

N∑
j=1

KijLjRT
j

 M∑
η=1

c̄j
ηB

j
η

T
µj
η


NOTE 1: the product RiS i and the products Ri (HiS + hi ∆θ) and
Ri
∑N

j=1 KijLjµj have to be augmented by zeros in rows 3,4 and 5
into (6x1) vectors to get correct phase averages σi

ρ as (6x1)
vectors.
NOTE 2: The above equation can be now used to construct certain
initial failure maps.
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Unidirectional fibrous laminates Initial failure maps

Local stresses in the fiber-matrix interface

EXAMPLE 1: uniform transverse tension σ0
22 applied to a

unidirectional lamina of SCS-6/Ti3Al

Uncoated fibers Coated fibers
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Unidirectional fibrous laminates Initial failure maps

Local stresses in the fiber-matrix interface

EXAMPLE 2: uniform out-of plane shear σ0
12 applied to a

unifrectional lamina of SCS-6/Ti3Al

Uncoated fibers Coated fibers
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Unidirectional fibrous laminates Initial failure maps

SCS-6/Ti3Al: S11 − S22 and S11 − S12 planes
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Unidirectional fibrous laminates Initial failure maps

SCS-6/Timetal-21: cooling followed by reheating
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Unidirectional fibrous laminates Discrete layer theory

Layered theory for laminated plates Mau (1973)
Geometry and loading conditions Temperature distribution

Ply in-plane stresses in local coordinates

σi
m = Li

m

[(
ε0

m

)
i
− Ti

F ∆ηi

]
+ x i

3Li
m

(
Sκi − Ti

D∆ηi

)
Auxiliary matrices

Ti
F =

 mi
11 mi

11
mi

22 mi
22

0 0

 ,Ti
D =

1
hi

 mi
11 −mi

22
mi

11 −mi
22

0 0

 , ηi = [∆ηi ,∆ηi−1]T
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Unidirectional fibrous laminates Discrete layer theory

Formulation - kinematics

Displacement field with each layer

ui
1(x1, x2, x3) = U i

1(x1, x2) + x i
3φ

i
2(x1, x2)

ui
2(x1, x2, x3) = U i

2(x1, x2)− x i
3φ

i
1(x1, x2)

ui
3(x1, x2, x3) = U i

3(x1, x2) i = 1,2, . . .N

Constraint (continuity) equations

g i
1 = U i+1

1 − U i
1 −

1
2

[
hi+1φi+1

2 + hiφi
2

]
g i

2 = U i+1
2 − U i

2 +
1
2

[
hi+1φi+1

1 + hiφi
1

]
i = 1,2, . . .N− 1

Principal of virtual work

δWint +
N−1∑
i=1

[β1δg1 + β2δg2]i = δWext
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Unidirectional fibrous laminates Discrete layer theory

Formulation - equilibrium
Work done by internal forces

δWint =
N∑

i=1

∫
Si

m

[(
F1δE0

m1
+ F2δE0

m2
+ F12δE0

m12

)
+ (M1δκ1 + M2δκ2 + M12δκ12) + (Q1δEs13 + Q2δEs23)]i dSm

Work done by applied load

δWext =
N∑

i=1

∫
∂Si

m

N∑
i=1

(
F̂nδUn + F̂nsδUs + Q̂nδU3 + M̂nδφs + M̂nsδφn

)
i
dSm

+

∫
S1

m

[
p−

1 δu
1
1

(
x1, x2,−

h
2

)
+ p−

2 δu
1
2

(
x1, x2,−

h
2

)]
dSm

+

∫
SN

m

[
p+

1 δu
1
N

(
x1, x2,

h
2

)
+ p+

2 δu
1
N

(
x1, x2,

h
2

)]
dSm

+

∫
Si

m

p3δU3dSm
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Unidirectional fibrous laminates Discrete layer theory

Formulation - equilibrium
Work done by internal forces upon integration by parts

Wint =
N∑

i=1

{∫
Si

m

[
−
(

F i
1,1 + F i

12,2

)
δU i

1 −
(

F i
12,1 + F i

2,2

)
δU i

2

]
dSm

+

∫
Si

m

[
−
(

M i
1,2 + M i

12,1

)
δφi

1 −
(
−M i

12,2 + M i
2,1

)
δφi

2

]
dSm

+

∫
Si

m

[
−
(

Qi
1,1 + Qi

2,2

)
δU3 + Qi

1δφ
i
2 −Qi

2δφ
i
1

]
dSm

+

∫
∂Si

m

[
F i

nδU
i
n + F i

nsδU
i
s + M i

nsδφ
i
n + M i

nδφ
i
s + Qi

nδU3

]
dsm

}
NOTE: Comparing terms in δEint and δWext multiplied by the same
virtual displacements provides equations of equilibrium for each
layer and natural boundary conditions. For simplified geometries,
these can be solved analytically using Fourier series.
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Unidirectional fibrous laminates Discrete layer theory

Simply supported (0o/90o/0o) rectangular laminate

Thermomechanical properties of Graphite/Epoxy system:
stiffnesses in [GPa], coefficients of thermal expansion in [10−6/0C]

EL ET GL GT
172.4 6.9 3.5 1.4
νLT νTT αL αT
0.25 0.25 0.0198 22.5

M. Šejnoha (FSv) Laminated plates MK2 September 13-15, 2017 22 / 42



Unidirectional fibrous laminates Discrete layer theory

Simply supported (0o/90o/0o) rectangular laminate

Temperature and loading via Fourier series

∆ηi =
∑
mn

∆ηi
mnsin

mπx1

a
sin

nπx2

b
, p3 =

∑
mn

p3mn sin
mπx1

a
sin

nπx2

b
,

Displacement field and constraints via Fourier series

U i
1 =

∑
mn

U i
1mn

cos
mπx1

a
sin

nπx2

b
, U i

2 =
∑
mn

U i
2mn

sin
mπx1

a
cos

nπx2

b

U3 =
∑
mn

U3mn sin
mπx1

a
sin

nπx2

b

φi
1 =

∑
mn

φi
1mn

sin
mπx1

a
cos

nπx2

b
, φi

2 =
∑
mn

φi
2mn

cos
mπx1

a
sin

nπx2

b

β i
1 =

∑
mn

β i
1mn

cos
mπx1

a
sin

nπx2

b
, β i

2 =
∑
mn

β i
2mn

sin
mπx1

a
cos

nπx2

b
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Unidirectional fibrous laminates Discrete layer theory

Simply supported (0o/90o/0o) rectangular laminate

Comparison with Mindlin’s bending theory and exact Pagano
(1970) solution. Applied uniform pressure p3 = 1 MPa.

Displacement u1 Stress S11
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Unidirectional fibrous laminates Discrete layer theory

Simply supported (0o/90o/0o) rectangular laminate

Comparison with Mindlin’s bending theory and exact Pagano
(1970) solution. Applied uniform pressure p3 = 1 MPa.

Stress S13 Stress S23
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Unidirectional fibrous laminates Discrete layer theory

Simply supported (0o/90o/0o) rectangular laminate

Applied temperature change: a) Uniform ∆ = θ = 100◦C,
b) Linear ∆θtop = 100◦C, ∆θbottom = 20◦C

Displacement u2 (a) Displacement u2 (b)
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Unidirectional fibrous laminates Discrete layer theory

Bending-stretching multilayered plate element

Modified total potential energy functional Πm

Πm(u, β) = Uint +

∫
Sm

N−1∑
i=1

(βi)
T g i dS − Uext

Internal Energy

Uint =
1
2

∫
Sm

N∑
i=1

[(
E0

m − TF ∆η
)T

A
(

E0
m − TF ∆η

)
+
(
Sκ− FD∆η

)T D
(
Sκ− TD∆η

)
+ (Es)T CEs

]
i
dS

Displacement field

〈u1,u2〉Ti = N1d i
u + x i

3N1d i
φ, u3 = N2dw

Strain field(
E0

m

)
i

= Bud i
u, κi = Bbd i

φ, E i
s = Bs1d i

φ + Bs2dw
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Unidirectional fibrous laminates Discrete layer theory

Bending-stretching multilayered plate element

Discrete form of constraint conditions

g i = GiMd i
g ,

(
d i

g

)T
=

〈(
d i

u

)T
,
(

d i
φ

)T
,
(

d i+1
u

)T
,
(

d i+1
φ

)T
〉

Matrix M

M =


N 0 0 0
0 N 0 0
0 0 N 0
0 0 0 N

 , N = [N1, N2, . . .Nnen ]

Matrix Gi = [G1, G2, G3, G4]i

Gi
1 =

[
−1 0
0 −1

]
, Gi

2 =

[
0 −hi

2
hi
2 0

]

Gi
3 =

[
1 0
0 1

]
, Gi

4 =

[
0 −hi+1

2
hi+1

2 0

]
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Unidirectional fibrous laminates Discrete layer theory

Bending-stretching multilayered plate element

Πm(d , β) =
∑
nel

{
N∑

i=1

dT
i K id i dS +

∫
Sm

N−1∑
i=1

(β)T
i GiMd i

g dS

−
∫

Sm

N∑
i=1

[
dT

uBT
uATF ∆η + dT

φBT
φSTDiTD∆η

]
i

dS

−
∫

Sm

[
dT

uNTp− − h
2

dT
φNTp−

]
1

dS

−
∫

Sm

[
dT

uNTp+ − h
2

dT
φNTp+

]
N

dS −
∫

Sm

dT
wNTp3 dS

−
∫
∂Si

m

N∑
i=1

[
dT

unNTF̂n + dT
usNTF̂ns

+dT
wNTQ̂n + dT

φnNTM̂n + dT
φsNTM̂ns

]
i

}
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Unidirectional fibrous laminates Discrete layer theory

Bending-stretching multilayered plate element
The stationary conditions with respect to nodal parameters d and
Lagrange multipliers β, i.e. ∂Πm/(∂d ∂β) = 0, yields the system
of equilibrium and constraint conditions

Kd + QTβ = R
Qd = 0

Single layered element k

dT
k =

〈(
d1

u

)T
,
(

d1
φ

)T
, . . .

(
d i

u

)T
,
(

d i
φ

)T
, . . .

(
dN

u

)T
,
(

dN
φ

)T
, dT

w

〉
[

k k QT
k

Qk 0

] [
dk
βk

]
=

[
Rk
0

]
, k i

k =

 ku 0 0
0 kb + k s1 k s2

0 kT
s2 k s3


i

NOTE: Reduced integration is used for submatrices associated
with out-of-plane shear to avoid shear locking
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Unidirectional fibrous laminates Discrete layer theory

Bending-stretching multilayered plate element

Example of three-layered plate element

k1
u 0 0 0 0 0 0 g1

1 0
0 k1

b + k1
s1 0 0 0 0 k1

s2 g1
2 0

0 0 k2
u 0 0 0 0 g1

3 g2
1

0 0 0 k2
b + k2

s1 0 0 k2
s2 g1

4 g2
2

0 0 0 0 k3
u 0 0 0 g2

3

0 0 0 0 0 k3
b + k3

s1 k3
s2 0 g2

4

0
(

k1
s2

)T
0

(
k2

s2

)T
0

(
k3

s2

)T ∑N
i=1 k i

s3 0 0(
g1

1

)T (
g1

2

)T (
g1

3

)T (
g1

4

)T
0 0 0 0 0

0 0
(

g2
1

)T (
g2

2

)T (
g2

3

)T (
g2

4

)T
0 0 0


Matrix g i

j
g i

j =

∫
Sm

NT
(

Gi
j

)T
dS, j = 1,2, . . .4
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 1: (0o/90o/0o) rectangular laminate

Convergence of u3 due to p3 = 1 MPa.

Normalized quantities

(S̄11, S̄22, S̄12) =
1

p3S2 (S11,S22,S12)

(S̄13, S̄23) =
1

p3S
(S13,S23) ū =

ETu
p3hS3 , S =

a
h
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 1: (0o/90o/0o) rectangular laminate

Comparison with exact Pagano (1970) solution. Applied uniform
pressure p3 = 1 MPa. Each lamina subdivided into 3 additional
plies.

Displacement u1 Stress S11
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 1: (0o/90o/0o) rectangular laminate

Comparison with exact Pagano (1970) solution. Applied uniform
pressure p3 = 1 MPa. Each lamina subdivided into 3 additional
plies.

Stress S13 Stress S23
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 2: Application to the analysis of lap-joints

Tensile failure of adhesively bonded composite laminates
Graphite-Epoxy [0]N laminate subjected to uniform shear
Interface element used to represent zero-thickness adhesive
The effect of overlap length, d/h and L/d ratio examined
Geometry and loading conditions of typical lap-joint
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 2: Application to the analysis of lap-joints

Influence of d/h ratio

Tensile tress S11,p = 2F/d Tensile stress S11
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 2: Application to the analysis of lap-joints

Influence of adherent thickness and L/h ratio.
Overlap length d = 5h

Shear tress S13,H = h Shear stress S13,H = h/2
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Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 3: Initial failure maps due to bending

Evaluation of maximum stresses at fiber matrix interface
Simple multi-scale analysis combining FEM and the Mori-Tanaka
method (Linearly varying play stresses replaced by
through-thickness averages)
Geometry, loading and support conditions

M. Šejnoha (FSv) Laminated plates MK2 September 13-15, 2017 38 / 42



Unidirectional fibrous laminates Discrete layer theory

EXAMPLE 3: Initial failure maps due to bending

Example: distribution of maximum interface stress over the
mid-plane of [0]8 SCS6 /Timetal laminated plate
(σzz , σrr , σθθ, σrz) = 1

S2p3
(σzz , σrr , σθθ, σrz), S = a

h

Interface tensile stress σrr Interface shear stress σrz
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Unidirectional fibrous laminates Deterministic optimization of laminated plates

Eigenstrains as control variables

Objective: derive optimal distribution of through thickness fiber
pre-stress to minimize in-plane stresses of the laminate

Objective functional
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Unidirectional fibrous laminates Deterministic optimization of laminated plates

EXAMPLE 1: Optimization of two-layer beam structure

Objective function

φ = φ(ε(µ),µ,F ) =

∫
V

(
σ2

1
2

+
σ2

2
2

)
dV

Stationary solution
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Unidirectional fibrous laminates Deterministic optimization of laminated plates

EXAMPLE 2: three-ply [0]3 laminate loaded in shear

M. Šejnoha (FSv) Laminated plates MK2 September 13-15, 2017 42 / 42



Potential applications Layered plate theory

Potential applications and current research effort

Modeling of delamination of laminated plates using FETI method
Modeling of laminated glass beams and plates

Typically a three-layer laminate consisting of two glass panes
bonded by polymeric interface
Simplified models based on effective thickness and
through-thickness homogenized properties typically do not work→
calls for layered plate theory
Analysis highly dependent on the formulation of constitutive model
of interface layer - Maxvell chain model

Both small-scale (at the level of material constituents) as well full
scale (at the level of laminate) experiments are needed to tune the
properties of the Maxwell model
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